Регистрация Вход
Геометрия 4-7 класс Vfhedhdyv6575

Суммативное оценивание за раздел «Окружность.»
1 вариант
Задание
1. Радиусы двух окружностей, имеющих общий центр, относятся как 2:3. Найдите их диаметры, если ширина соответствующего кольца равна 7 см.
[2]
2. Две прямые касаются окружности с центром Ов точках А и Ви пересекаются в точке С. Найдите угол между этими прямыми, если ∠ABO = 40°
[4]
3.Из центра окружности Ок хорде АВ, равной 20 см, проведен перпендикуляр ОС. Найдите длину перпендикуляра, если ∠OAB = 45°
[3]
4. Касательные, проведенные из данной точки к окружности радиуса 8 см, образуют между собой угол. Найдите отрезки этих касательных (заключены между данной точкой и точками касания)

1
Ответы:

1) r/(r + 7) = 2/3

2r + 14 = 3r

r = 14

d₁ = 2r = 2 * 14 = 28

R = r + 7 = 14 + 7 = 21

d₂ = 2R = 2 * 21 = 42

Ответ: 28 и 42

2) Рассмотрим △ABC - равнобедренный, т.к. AC=BC как касательный выходящие из одной точки.

∠OAC = ∠OBC=90° по свойству касательной и радиуса окружности, значит, ∠CAB = ∠CBA = 90°-40°=50°

∠ACB = 180°-(50°+50°) = 80°

Ответ: 80°

3) Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒ AC = BC =20:2=10

OA = OB - радиусы. ⇒ △AOB- равнобедренный.

Углы при основании равнобедренного треугольника равны.

∠OBA = ∠OAB = 45°⇒ ∠AOB = 90°

ОС⊥AB. ОС- высота, медиана и биссектриса прямоугольного △AOB и делит его на два равных равнобедренных.

СО=АС=СВ =10 см

Ответ: 10 см

4) Если соединить заданную точку, центр окружности и точки касания последовательно, то получим квадрат со стороной 8 см. Там все углы будут прямые и две стороны, равные радиусам ,равны 8 см .Необходимые отрезки равны 8 см.

1
Отв. дан Examplez
Для написания вопросов и ответов необходимо зарегистрироваться на сайте